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s E decay of vitality with age is a biological fact most
il recognize in themselves and none fail to recognize in others;
f but the biometry of the subject is a difficult undertaking.
E=—1§ There is indeed an immense literature, ranging from the
and psychological observations of Cicero which, of course, edified
us in school days to actuarial discussions on the graduation of rates of
mortality at advanced ages. To a writer with a predilection for arith-
metic the last named studies are more attractive than even Cicero, but
he soon discovers that the actuarial treatment of mortality at advanced
ages is a matter of art rather than science; partly because the data are
either scanty or unrzliable, partly because the financial interest of the
subject is negligible. In a recent paper Huber has summarized the al-
most bewildering variety of expedients adopted by official statisticians
in different countries to bring life tables to a more or less reasonable
end.

To the biostatistician who uses arithmetic, or even algebra, as a tool
and not an end in itself, the biological basis of senescence must always
be a primary object of curiosity. One does not reach biological truth
merely by doing sums. Doing sums, however, is one of the best ways
of differentiating biological truth from error. _

Fifteen years ago, Raymond Pearl in a course of lectures on the
Biology of Death gave a critical survey of relevant biological literature.

. One conclusion he reached was that, until more accurate observations
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had been assembled, theorizing was only an agreeable intellectual amuse-
ment. He and his colleagues settled down to the exact comparison of
mortality rates in different biological types and, Pearl and Miner (1935)
published what, in our opinion, is the best contribution yet made to the
subject. We will quote a concluding paragraph. “In the meantime it
seems to us that the crying need is for more observational data, care-
fully and critically collected for different species of animals and plants,
that will follow through the life history from birth to death of each
individual in a cohort of statistically respectable magnitude. From such
data sound and biologically meaningful life tables can be constructed.
Work of this character, laborious as it is, is likely to be more fruitful
of real knowledge than the construction of any mathematical ‘law’ of
mortality, however ingenious.” (Pearl and Miner, op. cit. 1935).

This finding confirms the conclusion one of us had drawn in 1928
from much less extensive data, and we have no doubt that the plan pro-
posed is the right strategy. But experience of experimental epidem-
iology, which is virtually an application of identical scientific principles
to the study of disease as a biological mass phenomenon, leads us to
believe that few have Charles Darwin’s iron self-control and can refrain
from speculation in advance of data.

Recently Dr. E. J. Gumbel published a monograph (1937), La
durée extréme de la vie humaine, which, for several reasons, merits
study. As is well known, Gumbel has made important contributions to
the study of the sampling-frequency distribution of the greatest or least
- values of a population, a problem first raised by Francis Galton which
other mathematicians, notably Fisher and Tippett (1928), have investi-
gated. Gumbel applied his methods to the particular case of survivor-
ship and in the course of his work reached a result which he termed the
paradox of the greatest age. We propose first of all to resume briefly
the mathematical argument. Gumbel uses the following notation :—

@
I (x) = J; 0 (x) dx where 8 (x) is the probability that a new-born

child will die between the ages 2 and » + dx. ¢ is the value of .+ for

which 6 (&) is a maximum, and termed the normal age. e (z) is the
expectation of life at age .

The probability, Wy () that the oldest of N decedents is not greater
than xis Wy (2) = (1 —1 () )V
and the density of probability wy () is

wy (%) =N(l——l(x))”"‘0(x) (1)
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The modal age of (1) i1s denoted by & and
r— ¢ . o —§
e (§) = e (&)
Now suppose we have two life tables for which ¢ > ¢, but

e, (&) < e; (&)

Then Gumbel reaches the conclusion that

{ —

<
®, = @, (2)
~>
>
if T :-<_ (51 — E:z) /% e, (52) — 0, (51) z (3)

so that for the more favorable table (i.e. the table for which the normal
age Is older) the most probable value of the “oldest age” of a sufficiently
large group! is less than in the unfavorable table. For instance the
normal age of white males 1901 U. S. A. experience was 75.05 years, of
colored males 56.92 years. The “oldest ages” deduced by Gumbel were

113 and 121 years. The corresponding observed values were 119 and
128 years.

We shall summarize the mathematical argument. Differentiating
(1) to obtain a maximum we have

N—1 _ _ ¢(®)
I—i@) DT g@ T° 4)

A first approximation is reached by assuming N large in comparison
with unity and unity large in comparison with ! (&), so approximately

Now suppose that the force of mortality at the oldest age may be
represented by :(—

~ ¢ (o
h @) = — - (6)
it follows that
P (@) = _I\lf— (7)

' This quantity is called by Gumbel the “dernier age”’. We translate this “oldest
age”, the inverted commas indicating the technical use of the expression.
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If this holds it may be shown that

5=¢+e (&) F [log N1 (§)] (8)

>
which implies that for & — ¢

I (%) =1 (€) exp [-—-f ("E'?_“;Si)]
xr— §

where f (—;_(_é_)__ 1s a steadily increasing function of + with at least

two differential coefficients, and F is the inverse function of f.- Equation

(5) 1is clearly reasonable. With respect to (6) we note that, by
definition,

p(r) = — :’g;
and that
’ F'(x) s 0 (x) ’ ¢ (x)
im___ I (x)y — —lim__ L (x) —lim_ | — )

It the limiting values of 6’(x) and ¢ (#) were both finite and not
zero, (6) would be ultimately exact and (7) must hold. But the limits
of both ¢(#) and @ (x) as & tends to infinity are zero.

But it is true that

Im___ (@) = 1
(@) /6 ()

Also (5) holds and

N — 1__, ( ] . ¥ (“E) _ (9)
! (@) pi (&)
follows from the definition of u (#) and the relation :(—

F(x) =1 (x) (W(x) —pn?(x))

We think it is difficult to conceive a ‘law’ of mortality such that ': Ef—;—
p2(x
will not tend to zero as & tends to infinity. Hence, we think, Gumbel’s
argument 1s sound and that the ‘paradoxical’ result stated above follows.
We may illustrate the result easily on so simple a ‘law’ as that of

Gompertz. Here !l (x) = k ¢g¢® where c is greater and g less than unity.
It may easily be shown (see Gumbel 1937, p- 15) that the force of
mortality at the normal age is equal to the natural logarithm of ¢. Now
suppose we have two tables both following Gompertz’s law from any
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age we please in relatively early life. Take, for instance, The Man-

chester Township Life Table (Males) 1881-9go and English Life Table
No. 10 (Males). The former is a very unfavorable, the latter a very
favorable table. For the former the normal age is between 50 and §I

and the expectation of life at that age between 12.8 and 12.4 years. For
the latter the normal age is between 74 and 75 and the expectation of
life at that age about 6.8 years. Now the force of mortality at 74 by

English Life Table No. 10 is greater than the force of mortality at 50
by the Manchester Township Table (the approximate values are 0.0865

and 0.0477). 1f, therefore, both tables followed Gompertz’s law, the
relations being :—

For English Life Table No. 10,/ (#) = ky, g,

For Manchester Township Table ,! (x) = &, g,5
it 1s clear that ¢, > ¢,

If we suppose Gompertz’s law to apply exactly to both tables from,
say, age 60, then as from 100,000 entrants, the survivors at 60 are

respectively 63,620 and 14,945, or ,/ (0) > ,! (o). Therefore k&, g,
>k, g,

Write ; N/ (x) / 2l (x) } — 7y

log 7o = log &, — log &, + ¢,* log g, — ¢c;* log g, (10)
Putting 2 = o, log , > 0 because k,9, >k, g,

But; since ¢, > ¢, > 1 and both log g, and log g, are negative, we can
by increasing a sufficiently make log r, negative.

Hence the table giving the large proportion of survivors at a rela-
tively early age must give the smaller proportion at some very advanced
age and conversely. This illustrates Gumbel’s reasoning.

The whole argument, of course, depends on the assumption that the
two populations, or tables, follow the same law — whatever the law may
be. That it is not necessarily true that ultimate survivorship will be less
favorable under a good than under a bad table may easily beé shown.
Pearl (1928) published life tables for two genetically distinct races of
Drosophila, the long-lived wild type and the short-lived vestigial type.
Line 107 of the former (males) had a normal age of 51 days (ap-
proximately) and an expectation of life at that age of 10 days. Vestigial
males had a normal age of 11 days and a normal expectation of 7.9
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days. A straight comparison will create no paradox for the normal
expectation of the vostigial flies-is less than that of the wild fliecs. But
we can easily choose a mixture of the two such that, for the mixture, the
expectation of life at the (younger) normal age for the mixture will be
greater than the expectation of life at 51 days for the wild flies. If,
for instance, we form a life table by taking 1/10th of the I, for wild
flies and g/10ths for the /, for vestigial flies, the normal age will still be
approximately 11 days but the expectation of life at that age will be
10.76 days as against 10 days in the wild type. But biologically speaking
the presence of the short-lived flies is irrelevant; ultimate survivorship
depends wholly upon the wild line. This does not, of course, impugn
In any way Gumbel’s reasoning; ex hypothest, the ‘law’ of mortality in
the mixture could not in general be of the same form 2s that of the
wild type.

This may be shown as follows. Let us assume that the laws of
mortality were the same for the wild type and the mixture, and of the
general form postulated by Gumbel. Then we have ;—

Wild type I, (%) = 1, (&) exp [——f ( ':'E;f)l )] (11)
Mixture I, () = 1, (&) exp [——f (——%)] (12)
Here

& =151,0 (&) =10, & =11, 8 (£) = 10.76

thus
§&, > &, and e (51) < © (fz)

Since ultimate survivorship depends wholly upon the wild line we must
assume that

gl, (x) /1, (.r)i-l*o.lasx% @ .

Let
r=%&(t+a=§ + (u+€1__62)

L(2) =1, (&) exp[-f (T(%T)]

L () =1, (&) exp[ f (El :f;,+ - )]

then
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Hence
logl, () —logl, () =
Qa & — &, 4+ a
o8l (&) —togh (&) + 7 (oo )1 (BT ) as

Now ultimately &, — ¢, and log I, (&) — log I, (£;) are both very
small compared with a, and since e (&) > e (&) the right hand side
of this expression will ultimately become positive and large. For in-

2
stance with Lexis’ hypothesis f (1) ~ ( el -+ log 2 u) and

m™
2

) { ) |
logl, () —log i, (#) = 2 [ —— — - ] approximately,
’ 1 L e® (£1) e (§2) 4

that 1s the ratio of /, (#) to !, (x) becomes very large. But this con-
tradicts the hypothesis that {l, () / !, (#)] 2 o0.1. Hence the form

of the function f cannot be the same in both cases.
We are now brought to an important and highly relevant considera-

tion. It has long been suspected that a genetic factor of longevity exists;
the work of Pearl and his collaborators has greatly strengthened the
case for believing that capacity to live long is heritable. If this be true
it follows that with advancing age the quality of the population changes,
in fact the analogy between a mixture of wild and vestigial flies and the
human population may be an exact analogy.

If we further suppose that, under an unfavorable environment, the
wild flies are more resistant to the factors causing death before old age
has begun, we could understand how, in a ‘bad’ table, rates of mortality
at relative advanced ages might be more favorable than in a ‘good’ table.
But it 1s not easy to understand how the age attained on the average by
one in a vast number of entrants to life would be affected, provided
that the initial proportion of wild flies in the population is the same
under the two environments. We are, therefore, led to consider whether
there is any good reason to believe that a uniform law of mortality does
apply to the facts of human experience. The merits and demerits of
the Gompertz or Makeham-Gompertz formulae have been discussed
many times (see e.g. Greenwood, 1928). Gumbel has given attention
to Lexis’ system, which has also been warmly praised by Freudenberg.
This is less familiar than the Makeham-Gompertz or Gompertz formulae
and we shall describe it in some detail.

Lexis’s theory of mortality was first published in 1877 (Lexis, 1877
PP. 42 et seq.) and again stated with little change in 1903 (see Lexis,
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IQ03 pp. 11I et seq.). He, following to some extent Quetelet but, with

a nuance of Platonism, thought of a typical or normal age of man to
the attainment of which the nature of things was striving. Were there
no disturbing factors, the life table distribution of deaths in a generation

would be a normal curve, the origin of which would be the normal age.
But in real life there would be disturbing factors. In the frst place

some of those born would be constitutionally unfit for long survival: in
the second place unfavorable environmental factors would lead to the

premature death of some fitted to reach the normal age. Lexis illus-

trated his theory by an analogy. He imagined the case of a man throw-
Ing balls at a mark who, if undisturbed, would distribute these balls on

etther side of the mark in a Gaussian distribution, but who was actually
disturbed in two ways. Firstly, some of the balls he picked up seemed
too light or too heavy; these he dropped at his feet. Secondly a mis-
chievous person ran along the skittle alley, put out his hand, caught and
dropped some of the balls in flight, confining his attention to the nearer
side of the alley, and not interfering with over-pitched balls. Under

these conditions the over-pitched balls will be distributed in a (Gaussian
way so that one will have from the normal age the half of a normal
curve, while, prior to that age, the distribution would have an early
maximum and then approach slowly to the value at the normal age.

Lexis tested this hypothesis on a large number of life tables. His
method was, starting with the tabular values of 4, to fix the normal age

(1.e. the age for which d, was maximal) and then, usually on a range
of about 8 years, to deduce the value of the standard deviation. E.g.
1f the normal age were 72, the number of deaths between 72 and 8o
were 100, and the whole number of deaths beyond 72 were 200, one would

enter Sheppard’s table for 14 (1 4 a) = 0.75 obtain the value of 8/c
and so deduce ¢. On many tables the agreement between observation

and expectation seemed to Lexis satisfactory.
It may be urged that the statistical method is rather crude and that

in fact no precise test of agreement between observation and theory was
applied. Lexis, however, belonged to an order of intelligence much
above the level at which schoolmasterly criticisms are appropriate. So
far as the question of method is concerned, he did not need to be told
that an arithmetically better fit might easily be obtained for a given set
of data by using more of the data. He only used a small range because

he knew that the further one went in a published life table the more
sophisticated by interpolation, graduation, etc., were the values printed
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in it and he wished to base his argument on a range over which the
data were least doctored.

So far as the question of fit is concerned, he was quite aware that
so simple a law as he proposed could hardly account for the whole of
the facts, and was, therefore, content to reach approximate resulgs.
Freudenberg (1934), using a more refined process of deducing the
standard deviation and working with more modern data also reached
apparently good concordance of d,’s beyond the normal age with those
required by the hypothesis of Lexis. But to say this is not to say that
the hypothesis of Lexis is free from difficulty. In the first place it is
to be noted that the normal age in Lexis’s sense has moved further on in
life. In the terms of Lexis’s parable, the skittle player has fixed his
eye on a mark further down the alley. Freudenberg (op. cit., p. 383)
using German Life Tables from 1871-1881 to 1924-1926 has an increase
from 70.1 years to 75.4 years for males (o decreased from 9.53 to 8.12)
and from 72.2 to 76.2 years for females (o decreased from 8.30 to 8.20).

We have used four tables based on English experience, viz. E. L. 7
and 10 and the ‘ultimate’ tables based on annuitant experience by
Elderton and Oakley (1924). In the national tables the range of normal
ages is much smaller (as one would expect) but while for E. L. 7 (the
mortality rates prevailing 30 years ago) the normal age is 79.8 years
it is 85.5 years for the very select annuitants. It is at least clear that
our hypothetical skittle player shifts his mark. This is rather difficult
to reconcile with the original hypothesis. The argument was that,
ideally, we should have a normal frequency distribution of the variate
d, and that practically we did not have such a distribution, partly be-
cause the data themselves were distorted by manipulation but partly —
and in greater part — by the intrusion of deaths, the juvenile and pre-
mature deaths, which were strictly speaking accidental impurities,. With
the reduction of these by environmental betterment the pure idea should
emerge more distinctly. But the normal age could hardly move unless
we suppose that the mark is changed. If, owing to hygienic betterment
or selection, the quality of young lives is improved — in terms of the
analogy the box of balls used by the thrower contains fewer too light
or too heavy balls — one would perhaps expect the scatter to diminish,
but hardly the position of the target.

In spite of our respect for Lexis as a statistician, we cannot discern
in his treatment of the mortality table any biological superiority to that
of, for instance, Karl Pearson, who dissected the table into a scries of
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components, a method adopted in principle by Arne Fisher. The Lexian
method has an advantage over the Pearsonian method in so far as fewer
constants are needed (see Pearl, 1922, pp. 94-100) but not, so far as
appears, any intrinsic merit. The analogy of the skittle player is only
an analogy, without biological justification.

Possibly such relative advantage over the method of Gompertz as
Freudenberg found means no more than that the rate of mortality in-
creases with age more slowly than the ‘law’ of Gompertz requires.
Gumbel has pointed out that it must follow algebraically that when the

TABLE 1

English Life Table No. 10 (Females)

AGE ‘OBSERVED’ ds CALCULATED (LEXIAN METHOD)
8o 2949 2860.5
81 2834 2795.9
82 2684 2700.4
83 2505 2550.7
84 2303 2333.6
8s 2080 2116.8
86 1843 1864.9
87 1500 1597.0
88 1347 1355.9
89 1114 11172.9
90 905 806.1
91 720 712.2
92 561 549.5
o3 426.9 412.3
94 316.9 306.7
95 220.0 221.4
06 160.8 156.4
07 109.5 107.4
o8 72.2 73.2
09 45.9 48.4
100 28.1 31.1
101 16.6 10.8
102 0.3 12.3
103 5.0 74
104 2.6 4.4
108 1.2 28

106 ) 0.6- 3.1
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same data are graduated by the two methods, the Lexian values of I,
will first be less and then greater than the corresponding Gompertzian
values. At this point some arithmetical illustrations may be helpful.
We took first® English Life Table No. 1o (females) treated the dg
column for age 80 onwards as the tail of a normal curve and obtained

TABLE 3

Ultimate table of annuitant experience (Elderton and Oakley). Gradu-
ations by Gomperts's method (G) and Lexis’s method (L).

Tabular values (d.’'s) expressed as percentages
of the graduated values

M.G. M.L. F.G. F.L.
8o 99.9 105.6
81 100.0 102.4 cees cens
82 100.0 08.8
83 100.0 07.7
84 100.0 96.0
8s 100.0 06.5 04.0 104.5
86 100.0 06.2 96.2 100.8
87 100.0 07.2 98.0 90.2
88 100.0 99.2 99.4 97.4
89 100.0 100.2 100.3 97.4
00 100.0 102.7 101.0 97.5
o1 100.0 103.8 101.3 97.6
02 100.0 100.1 101.3 00.3
03 100.0 106.5 I01.1 100.7
04 100.0 107.2 100.7 101.6
05 100.0 107.6 100.2 103.8
06 100.0 105.4 99.7 10§.1
97 100.0 103.3 00.2 105.4
o8 100.0 98.3 98.7 106.4
00 100.0 092.4 08.s 10S.1
100 100.0 8s.5 98.5 104.0
101 100.0 75.9 98.9 100.8
102 099.9 66.4 00.8 95.6

103 100.0 55.3 101.3 90.0

* We are much indebted to our colleagues Dr. Martin and Mr. Cheeseman for
carrying out this and much more heavy arithmetical work for us.



BIOSTATISTICS OF SENILITY 13

the constants by Pearson’s method.® The result (see Table 1) is, from

the graphical point of view, excellent. Indeed grouping the values from
age 98 onwards together, the fit, on the basis of the life table numbers
1s excellent, for x* —= 9.5. This would, on the tabular numbers, imply
an excellent fit. But the actual number of deaths at ages over 80 from
which the table as calculated was 11 1,746 so that one should multiply the
value of x* by almost 4.49 for a strict test. Perhaps, however, such com-

parisons are unreasonable. It would be naive to expect good fits in the
sense of the test, because, inter alia, one is using as data not the original
material but artificially graduated figures. The fairest comparison of
Gompertzian with Lexian results would seem to be to show the respective
percentage deviations for a wide range of tables. This is done in Table
2. We think the entries lead to the conclusion that neither method has
an overwhelming advantage over the other and that neither has any
pretention to be regarded as a natural ‘law’. Indeed the only table
which does give a decisive superiority to one or other method is the
Ultimate Table of the Annuitant Experience, Table 3, for which a

Gompertzian graduation does completely reproduce the d.’s from age
80; not a very strange result as the table was graduated by joining two
Gompertz graduations (see Elderton and Oakley, op. cit. p. 40) ! What
was a hittle surprising was that a ‘normal’ tail did fit the ‘facts’ quite well
over the range 81-9o, with a maximum percentage error of 4.0 and only
diverged widely after age 98. We conclude (a conclusion long since
reached by actuaries) that none of these ‘laws’ is anything but a useful
interpolation formula. Hence, we think, no arithmetical calculation of
the ‘last age’ has much value.

But one has a certain human curiosity regarding the ‘true’ law of
mortality at old ages. Since the data are, statistically speaking, scanty
while the practical importance (from the actuarial side) is trivial, the
subject had not been discussed in detail, before Gumbel’s work. We
can only speculate, but a few conjectures may be allowed. Two sets of
facts are suggestive. In the first place, as mentioned above, it has long
been held that a constitutional factor is of primary importance to the
attainment of great length of days; the earlier literature is succinctly
discussed by Rolleston (1922, PP. 32 et seq.) and more recently Pearl

" Fitting by Lexis’ original method from the normal age (77 years for this
table) gives a rather less good result. For all other fittings the Pearsonian method

has been used.
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and his collaborators (see Pearl and Raenkham, 1932, et al.) have made
substantial contributions to the case in favour of an heritable element.

In the next place a study of the actual data of mortality at very
advanced ages — say at ages over go — produces the impression that
the increase of mortality rate with age advances at a slackening rate,
that nearly all, perhaps all, methods of graduation of the type of
Gompertz’s formula over-state senile monality. The weights of these
two sets of data are very unequal. We do not have much doubt that
the importance of an hereditary factor of longevity is proven, but the
comparatively scanty ‘facts’ — in the actuarial sense — of statistical
mortality do not lend themselves to firm conclusions.

From the first and more weighty evidence we may reasonably con-
clude that the “law” of senile mortality, meaning for the present the
functional relation between force of mortality and age could not well
be the same for all members of a population. It must be different for
the genetically long-lived and the genetically short-lived. It is different
for annuitants and insured persons. With our present knowledge the
rates of the very aged could never be predicted from an extrapolation
of mortality rates based on earlier ages, the exposed to risk are not
random samples of an entering population but selections, and extra-
polations will consequently exaggerate senile mortality. The much less
weighty evidence, or impression, derived from the scanty data of statis-
tical records justify us in speculating on the possibility that with advanc-
ing age the rate of mortality asymptotes to a finite value. At first sight
. this must seem a preposterous speculation. In a labile, highly specialized
metazoan, decay must surely continue. One cannot without absurdity
believe that, other things equal, a man of 100 is not more likely to die
within a year than a man of go. But other things are not equal. Swift’s
gloomy parable of the Struldbrugs is not without its practical applica-
tion. With advancing years the disabilities, forcefully described by a
large number of poets whom it is needless to quote, restrict activities.
Even the juvenile of 60, if ordinarily intelligent, eschews the violent
exercises of the child of 40. Centenarians rarely appear in public. A
statistical rate of mortality might show no increase with age, if the
demands made on the vital forces diminished pari passu with the decay
of vigour.

Let us think then of a group of aged persons who have attained the
age of »# (where & is greater than 9o years) as competitors for prizes,
the prizes being awarded to those who survive 1, 2, etc., years. Who-
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ever dies at an age less than » 4 1 has won no prize, he who dies be-
tween # -+ I and & 4+ 2 has won 1 prize and so forth. Then with a
mere change of nomenclature we have the statistical situation considered
by Yule and Greenwood in their 1920 paper. If the competitors have
equal chances of winning prizes, the graduation of the d, column should
be a simple Poisson series; if their chances are unequal the graduation
might follow the simple skew form which was christened the Infinitely
Compound Poisson distribution.*

The graduation could evidently hold only at extreme ages and in-
volves as a corollary that g, tends to a finite limit less than unity.

In the form convenient for computation the successive frequencies
are given by the terms of :—

c r r r(r+4 1)
;—_*_I) (1+—————-(C+I)+2!(C+I)z+ ...... ) (14)
r r (¢ 4 1)
where m — - and p, == R

If ¢ > o, 1 remaining finite,

c mec
— > g—m
(c+ I)

and the expression becomes e~ (1 + m -
the simple Poisson.

m2

”
2|

. N A
Thg limiting value of g, is (r F m)

* We are aware that this is an over-simplification. If this form of graduation
proves satisfactory, it will, we think, lend support to the hypothesis that our popu-
lations are heterogeneous with regard to longevity. But the negative binomial can-
not be the true law. The form of the distribution to which the hypothesis tends
is not strictly independent of the interval of age taken as a unit. If we fit with
an interval of one year and then combine our theoretical frequencies for two-year
intervals, the new distribution is not a negative binomial in terms of the new inter-
val. Yet a direct fit of a negative binomial to two-year intervals might be good
enough for practical purposes of graduation.

There is another point of interest. We show that this hypothesis ultimately
leads to a constant g, and therefore to a constant force of mortality. But this.
means that ultimately /(s) approaches the exponential form ae-®*. The reader
may therefore enquire whether Gumbel’'s “paradox” would not hold for two
populations for which our hypothesis was correct. This does not follow, for
Gumbel's paradox depends on the form of the function f in f[(x—¢)/e(€)]
being the same for both populations from the mormal age onwards.
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Thus
d, r rr(r+1)...... (r +x—1) m \* 1
Lo =(r+m) 7 | '(r+m (13)
ls r \"r(r+1)...... (r + 2+ — 1) m )4‘
lo — ;—I—Hf;l-) x| y - m Yo
where
o _rj—:z'_ "
=it T ()
(r + 2) (r—l—x+1)( m )2+ ....... (16)
(¥ 4+ 1) (x4 2) r - m

When + 2 o

m _m |2 __ [T+ m ,
ey > 1 | r+m)+(r+m)+ ......... ( ~ )

y
->
R (r . m)

In the simple Poisson

In a life table the curtate expectation of life would be the m of this
notation.

If this is of order 6 years (its value at the maximum of d m E. L.
10) and if the limiting value of ¢, for tending to infinity were of
order 0.5, ¢ must be of order unity and » approximately equal to 6. In
other words, the d,’s would be still increasing. Hence the graduation
could not apply to any system of d,’s for which ¢, was greater than 2,

92 years and upwards in the Annual Reports of the Registrar-General
for 1921-35. It is hardly necessary to say that to treat these figures as
the d.’s of a life table is to be deliberately guilty of the fault of corn-
structing a life table from the deaths in a non-stationary population.
But as a rough preliminary test on large numbers the Plan seemed

worth trying.
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As a matter of arithmetical fact the go's of this pseudo life table for
males agreed closely with the smoothed values of E. L. 10 :—

Age Qe Of pseudo table qs of E.L. 10
92 0.321 0.320
93 0.348 0.338
94 0.368 0.357
95 0.307 0.376
06 0.397 0.396
97 0.393 0.417
98 ) 0.420 0.438
09 0.432 0.401

100 0.453 0.481

TABLE 4

1921-35. Deaths. (Data from R-G’s Reports)

L T

—_—

MALES

AGE - -
Obs. Compound Poisson
e — —
92 4348 cet e  ceeee .o cesee 4302.6
93 3202 cone ceees e reas 3100.8 3324.4
94 2204 2118.6 2280.1 2260.7
08 1389 cen e cee coee coene « o 1366.1 1501.1 1486.2 1453.7
96 053 ceo 024.1 063.7 952.8 927.4 907.8
07 568 . ceee §62.8 610.0 602.8 s81.3 565.8 556.9
98 309 .. 363.6 373.0 367.6 361.0 347-5 340.4 337.5
90 220 215.4 224.7 222.3 214.5 211.4 205.2 202.9 202.7
100 131 123.0 130.7 129.2 127.6 123.1 122.1 120.1 120.2 123.0
101 63 25.2 73.9 73.4 71.8 70.0 69.9 69.9 70.8 7:1.8
102 40 42.1 40.8 40.0 39.9 39.5% 39.7 40.5 41.8 43.5
103 30 22.9 22.2 22.0 22.0 22.2 22.% 23.4 24.3 as.0
104 10 12,2 12.0 12.0 12.1 12.4 12.7 13.% 14.2 14.7
105 8 6.8 6.5 6.5 6.6 6.9 7.1 2.9 8.3 8.6
106 5 3.4 3.5 3.8 3.6 3.8 4.0 4.4 4.8 5.0
107 1 1.8 1.8 1.9 1.9 2.1 2.2 2.5 2.8 2.9
108 . .9 1.0 1.0 1.1 1.2 1.2 1.4 1.6 1.7
109 . .5 .5 .0 6 7 7 .8 9 3.0
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7473
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2650
1789
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From age 92

i
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4

44
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4

03

94
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TABLE 4 (Continued)

1921-35. Deaths. (Data from R-G’s Reports)

e v 740.1
405.4 462a.1
272.3 26%.0
1574 147.4

86.1 80.8

45.8 43.8

23.9 23.6

12.3 12.7

6.3 6.8

lllll

IIIII

TABLE s

Values of x* for deaths (1921

”l

-35) observed and calculated by
Compound Poisson. (Last two ages grouped.)

——

x¥ ”’ P FEMALES x*
-_—
30.1422 16 .012 Fromagegz 314.2177
25.2692 15 .032 “ ‘“ 03 151.8712
22.5117 14 .048 ‘ “ 04 79.8604
9.6850 13 .643 Y 95 49.9437
10.7766 12  .463 . “ 06 24.1411
6.4359 11 .776 Y 97 12,0341
0.4711 10 691 - “ 08 13.8827
6.0111 0 .546 ‘ “ 00 16.1200
7.8754 8 .345 ‘ “ 100 13.2i87

IS <.006000
1.4 <.000000
13 <.000000
12 000003
II 0073
10 166

9 .08s

8 .024

7 .040
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In the next table (Table 4) we have the results of graduation by
Compound Poissons for various starting ages and in the following table
(Table 5) the Tests for Goodness of Fit (three degrees of freedom
are absorbed in the fitting). The results for males are surprisingly
good; for females, bad from the accurate point of view, although
graphically not preposterous. .

We were encouraged to seek more exact data. The Report on the
Mortality Experience of Government Life Annuitants, 1goo-1920 (S. O.
1924 ), contains data of interest. Actually in the tabular matter one has
not lives but contracts so that the life upon which two annuities have
been purchased will have two exposures and, of course, two deaths.
For reasons stated this is preferable for the purposes of the report, but
not for our object. It means, or may mean, that the exposed lives are
appreciably less numerous than the exposed contracts, and perhaps goes
a little way to explain the violent fluctuations of the observed rates of
mortality. Take for instance the relatively large experience of female

annuitants exclusive of the first year after purchase. From age 93
onwards one has the following figures :—

Exposed to risk Deaths I
03 830 276 0.33253
o4 550 159 0.28Q09
95 372 IIS 0.300130
96 247 73  0.295546
4 74 177 50 ' 0.333333
o8 113 37 0.327433
09 78 29 0.371794
100 47 17 0.361170
101 28 11 0.392857
102 17 2 0.117647
103 15 S 0.333333
104 8 5 0.6250
105 3 3 1.00000

These are distressingly unreasonable figures on any hypothesis. To
graduate them on so simple a hypothesis as that of the ‘proneness’ rule

radix and obtained the successive values of l> by multiplication by the
» S, just as they were. . One had then 830, 554, 394, 272, 192, 128, 86,
54, 33, 29, 19, 7, 0. So the d,’s were 270, 160, 122, 80, 64, 42, 32, 21,
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4, 10, 12, 7. ‘Taking these as a frequency distribution for + — o, 1, 2,
€tc., the mean is 2.13012, the variance 5.087889. Leading to ¢ —
0.552104, and r = 1.176175. To the nearest integer the values given
are 246, 187, 131, 89, 60, 40, 27, 18, 12, 8, 5 and 9. The goodness of
fit is contemptible, as it must be having regard to the wild fluctuations
at ages over 100. Even if one clubs together the last four values, P
cannot be persuaded to rise above .03. Still the result is less grotesque
than one might have expected.

In the following table are shown the ‘actual’ values, those calculated
on the ‘proneness’ hypothesis, those derived from the smoothed life
table based on the experience (op. cit. p. 45).

Age Actual Proneness Life table
93 276 240.2 233.2
04 160 186.6 176.8
05 122 130.8 130.7
00 8o 89.2 04.2
07 64 60.0 66.1
98 42 40.0 45.2
99 32 20.5 30.9

100 21 17.5 21.1

101 4 11.5 14.3

102 10 7.6 0.2

103 12 5.0 5.3

104 7 Q.1 6.0

The values of x2? are respectively 27.1 and 28.8, both graduations are
equally good (or bad) although the assumptions are completely different.
On the proneness view, 9» asymptotes to the ultimate value 0.35 57, while
the graduated life table makes cvery value of g, for 2 greater than 90
more than this and g, 4 is unity. The inference 1S, ot that these data con-
firm the hypothesis but that they do not exclude it. As by age 100 g,
1s already within 0.011 of the ultimate value, it would be sufficiently
exact to say that from age 100 the population decreases in geometrical
progression with a common ratio of 0.65. On that hypothesis the chance
a centenarian woman would have of living to be 106 would be about
one in thirteen, as compared with nil (on the official table). But the
chance of a woman of 93 attaining this age would be only one in 222.
Of course from the practical point of view the fact that the expectation
of life at all ages over 100 would be nearly 2.4 years so that the fact
that annuities would be independent of age, would deter but few
purchasers |
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The data for male lives in this report are still scantier and the
empirical values of g, at ages over Q0 so erratic that we have not
ventured to graduate them.

At this point Mr. E. S. Jones, Actuary to the National Debt Office,
was kind enough to supply us with the experience of 240 women and
50 men who attained the age of go in I1920-22 and continued under
observation until death. In the next table (Table 6) we show observed
deaths and graduations by Compound Poissons.

TABLE 6

National Debt Office Data. Deaths (1920-22) observed and calculated
by Compound Poisson

-_—

1020-22
MALES FEMALES
Age Obs. Compound Poisson Obs. Compound Poisson
-_—
00 11 0.1 46 36.0
oI y2 11.6 45 46.3
02 7 10.I 29 42.9
03 5 7-3 34 34.6
05 2 3.0 21 18.3
06 4 +8 1.8 } 7.1 Il 12.6
o7 2 2.3 11 8.4
o8 50 50 10 5.5
99 3 4.3
100 4 2.3
101 .. 8 1.4 9.6
102 I 2.3
240 240
X* = 3.200r1 x* = 12.7081
13 — 4 P = .3644 n — 8 P — .080

-_—

The fits are again not unreasonable. For males, using 7 groups and
therefore 4 degrees of freedom P — 0.36. For females, using 10 groups
and 7 degrees of freedom P — 0.08. The limiting values of ¢, are
0.439 for women and 0.544 for men. Some tests of the ultimate
mortalities in non-human experience were not unfavorable. Thus for



22 HUMAN BIOLOGY

Hydra (Pearl and Miner, P. 61) one has® {(graduated values in
backets) :— 18 (17), 12 (13), 6 (7)., 4 (3), 1 (1). For starved
Drosophila (op. cit., p. 64) :— 38 (36), 29 (30), 23 (23), 18 (18),
13 (13), 10 (10), 7 (7), 5 (5), 4 (4), 3 (3), 2 (2), 2 (2), 1 (1) and
for the tail 3 (3). |

It is hardly necessary to add that such agreements in small samnoles
do no more than show that the method of graduation is not preposterous :
they go no way to prove that the theory is correct. Take for example
the following distribution.

Value Frequency

0 4
24
24
24
17

4

2

) {

N QA &b W N -~

100

‘T'he mean and variance are 2.39 and 2.5779, giving for a Compound
Poisson ¢ — 12.7195 and r = 30.3996. The fit is not unsatisfactory —
the theoretical frequencies (to the nearest whole number) are 10, 22,
25, 20, 12, 6.3 and 1. For five degrees of freedom one has a P of more
than 0.2. The distribution is of the frequency with which the letter s
occurs in each of the first hundred lines of Aeneid XII. 1t is true that
s is a letter frequently doubled so that a Compound Poisson might be
expected to give a better fit than a Simple Poisson. It is not true that
the success of the experiment throws the least light upon Virgil’s method
of composition. All that may be claimed as shown by the trials is that
1f and when numerically adequate data are available, the very simple
Compound Poisson formula may justify attention.

Biologically speaking the question whether 72 does tend to an ultimate
value far short of unity is interesting. Practically speaking, although
we think that the chance of an ‘Old Parr’ emerging under the favorable
modern environment is not less than in Stuart times, it is a chance

* For Hydra we took deaths in five day sets from age 125-129 days; for starved
Drosophilia deaths in hours from age 50 hours.
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without much actuarial impertance. It is, if ¢, tends to 0.5, a chamnce
of not much more than (0.5)% that a modern centenarian will beat
Parr’s record.
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